3.1.37 \(\int \frac {\tanh ^2(x)}{\sqrt {a+b \coth ^2(x)}} \, dx\) [37]

Optimal. Leaf size=51 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b} \coth (x)}{\sqrt {a+b \coth ^2(x)}}\right )}{\sqrt {a+b}}-\frac {\sqrt {a+b \coth ^2(x)} \tanh (x)}{a} \]

[Out]

arctanh(coth(x)*(a+b)^(1/2)/(a+b*coth(x)^2)^(1/2))/(a+b)^(1/2)-(a+b*coth(x)^2)^(1/2)*tanh(x)/a

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {3751, 491, 12, 385, 212} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b} \coth (x)}{\sqrt {a+b \coth ^2(x)}}\right )}{\sqrt {a+b}}-\frac {\tanh (x) \sqrt {a+b \coth ^2(x)}}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tanh[x]^2/Sqrt[a + b*Coth[x]^2],x]

[Out]

ArcTanh[(Sqrt[a + b]*Coth[x])/Sqrt[a + b*Coth[x]^2]]/Sqrt[a + b] - (Sqrt[a + b*Coth[x]^2]*Tanh[x])/a

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 491

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*e*(m + 1))), x] - Dist[1/(a*c*e^n*(m + 1)), Int[(e*x)^(m +
n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[(b*c + a*d)*(m + n + 1) + n*(b*c*p + a*d*q) + b*d*(m + n*(p + q + 2) + 1)*
x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntBino
mialQ[a, b, c, d, e, m, n, p, q, x]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \frac {\tanh ^2(x)}{\sqrt {a+b \coth ^2(x)}} \, dx &=\text {Subst}\left (\int \frac {1}{x^2 \left (1-x^2\right ) \sqrt {a+b x^2}} \, dx,x,\coth (x)\right )\\ &=-\frac {\sqrt {a+b \coth ^2(x)} \tanh (x)}{a}+\frac {\text {Subst}\left (\int \frac {a}{\left (1-x^2\right ) \sqrt {a+b x^2}} \, dx,x,\coth (x)\right )}{a}\\ &=-\frac {\sqrt {a+b \coth ^2(x)} \tanh (x)}{a}+\text {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {a+b x^2}} \, dx,x,\coth (x)\right )\\ &=-\frac {\sqrt {a+b \coth ^2(x)} \tanh (x)}{a}+\text {Subst}\left (\int \frac {1}{1-(a+b) x^2} \, dx,x,\frac {\coth (x)}{\sqrt {a+b \coth ^2(x)}}\right )\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b} \coth (x)}{\sqrt {a+b \coth ^2(x)}}\right )}{\sqrt {a+b}}-\frac {\sqrt {a+b \coth ^2(x)} \tanh (x)}{a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 1.02, size = 132, normalized size = 2.59 \begin {gather*} \frac {\left (1+\frac {b \coth ^2(x)}{a}\right ) \sinh ^2(x) \left (2 (a+b) (-a+b+(a+b) \cosh (2 x)) \coth ^2(x) \, _2F_1\left (2,2;\frac {5}{2};\frac {(a+b) \cosh ^2(x)}{a}\right )+\frac {3 a \text {ArcSin}\left (\sqrt {\frac {(a+b) \cosh ^2(x)}{a}}\right ) \left (a+2 b \coth ^2(x)\right )}{\sqrt {-\frac {(a+b) \cosh ^2(x) \left (a+b \coth ^2(x)\right ) \sinh ^2(x)}{a^2}}}\right ) \tanh (x)}{3 a^2 \sqrt {a+b \coth ^2(x)}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Tanh[x]^2/Sqrt[a + b*Coth[x]^2],x]

[Out]

((1 + (b*Coth[x]^2)/a)*Sinh[x]^2*(2*(a + b)*(-a + b + (a + b)*Cosh[2*x])*Coth[x]^2*Hypergeometric2F1[2, 2, 5/2
, ((a + b)*Cosh[x]^2)/a] + (3*a*ArcSin[Sqrt[((a + b)*Cosh[x]^2)/a]]*(a + 2*b*Coth[x]^2))/Sqrt[-(((a + b)*Cosh[
x]^2*(a + b*Coth[x]^2)*Sinh[x]^2)/a^2)])*Tanh[x])/(3*a^2*Sqrt[a + b*Coth[x]^2])

________________________________________________________________________________________

Maple [F]
time = 2.27, size = 0, normalized size = 0.00 \[\int \frac {\tanh ^{2}\left (x \right )}{\sqrt {a +b \left (\coth ^{2}\left (x \right )\right )}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^2/(a+b*coth(x)^2)^(1/2),x)

[Out]

int(tanh(x)^2/(a+b*coth(x)^2)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^2/(a+b*coth(x)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(tanh(x)^2/sqrt(b*coth(x)^2 + a), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 531 vs. \(2 (43) = 86\).
time = 0.43, size = 1621, normalized size = 31.78 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^2/(a+b*coth(x)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*((a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 + a)*sqrt(a + b)*log(((a*b^2 + b^3)*cosh(x)^8 + 8*(a*b^
2 + b^3)*cosh(x)*sinh(x)^7 + (a*b^2 + b^3)*sinh(x)^8 + 2*(a*b^2 + 2*b^3)*cosh(x)^6 + 2*(a*b^2 + 2*b^3 + 14*(a*
b^2 + b^3)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a*b^2 + b^3)*cosh(x)^3 + 3*(a*b^2 + 2*b^3)*cosh(x))*sinh(x)^5 + (a^3
- a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^4 + (70*(a*b^2 + b^3)*cosh(x)^4 + a^3 - a^2*b + 4*a*b^2 + 6*b^3 + 30*(a*b^2
 + 2*b^3)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a*b^2 + b^3)*cosh(x)^5 + 10*(a*b^2 + 2*b^3)*cosh(x)^3 + (a^3 - a^2*b +
 4*a*b^2 + 6*b^3)*cosh(x))*sinh(x)^3 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 - 2*(a^3 - 3*a*b^2 - 2*b^3)*cosh(x)^2 + 2
*(14*(a*b^2 + b^3)*cosh(x)^6 + 15*(a*b^2 + 2*b^3)*cosh(x)^4 - a^3 + 3*a*b^2 + 2*b^3 + 3*(a^3 - a^2*b + 4*a*b^2
 + 6*b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(b^2*cosh(x)^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 + 3*b^2*cosh
(x)^4 + 3*(5*b^2*cosh(x)^2 + b^2)*sinh(x)^4 + 4*(5*b^2*cosh(x)^3 + 3*b^2*cosh(x))*sinh(x)^3 - (a^2 - 2*a*b - 3
*b^2)*cosh(x)^2 + (15*b^2*cosh(x)^4 + 18*b^2*cosh(x)^2 - a^2 + 2*a*b + 3*b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 +
2*(3*b^2*cosh(x)^5 + 6*b^2*cosh(x)^3 - (a^2 - 2*a*b - 3*b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh(
x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a*b^2 + b^3)*cosh(x)^7
+ 3*(a*b^2 + 2*b^3)*cosh(x)^5 + (a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^3 - (a^3 - 3*a*b^2 - 2*b^3)*cosh(x))*s
inh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh
(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + (a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 + a)*sqrt(a + b)*
log(-((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 - 2*a*cosh(x)^2 + 2*(3*(a + b)*cosh(
x)^2 - a)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(a + b)*sqrt(((a + b)*cosh(x
)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a + b)*cosh(x)^3 - a*cosh(
x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) - 4*sqrt(2)*(a + b)*sqrt(((a + b)*cosh(x)^2
+ (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a^2 + a*b)*cosh(x)^2 + 2*(a^2 + a
*b)*cosh(x)*sinh(x) + (a^2 + a*b)*sinh(x)^2 + a^2 + a*b), -1/2*((a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)
^2 + a)*sqrt(-a - b)*arctan(sqrt(2)*(b*cosh(x)^2 + 2*b*cosh(x)*sinh(x) + b*sinh(x)^2 + a + b)*sqrt(-a - b)*sqr
t(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a*b + b^2)*co
sh(x)^4 + 4*(a*b + b^2)*cosh(x)*sinh(x)^3 + (a*b + b^2)*sinh(x)^4 - (a^2 - a*b - 2*b^2)*cosh(x)^2 + (6*(a*b +
b^2)*cosh(x)^2 - a^2 + a*b + 2*b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(2*(a*b + b^2)*cosh(x)^3 - (a^2 - a*b -
2*b^2)*cosh(x))*sinh(x))) + (a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 + a)*sqrt(-a - b)*arctan(sqrt(2)*
(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a +
 b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*si
nh(x)^4 - 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 - a + b)*sinh(x)^2 + 4*((a + b)*cosh(x)^3 - (a - b)*cos
h(x))*sinh(x) + a + b)) + 2*sqrt(2)*(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 -
2*cosh(x)*sinh(x) + sinh(x)^2)))/((a^2 + a*b)*cosh(x)^2 + 2*(a^2 + a*b)*cosh(x)*sinh(x) + (a^2 + a*b)*sinh(x)^
2 + a^2 + a*b)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\tanh ^{2}{\left (x \right )}}{\sqrt {a + b \coth ^{2}{\left (x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)**2/(a+b*coth(x)**2)**(1/2),x)

[Out]

Integral(tanh(x)**2/sqrt(a + b*coth(x)**2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^2/(a+b*coth(x)^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(ex

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {{\mathrm {tanh}\left (x\right )}^2}{\sqrt {b\,{\mathrm {coth}\left (x\right )}^2+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^2/(a + b*coth(x)^2)^(1/2),x)

[Out]

int(tanh(x)^2/(a + b*coth(x)^2)^(1/2), x)

________________________________________________________________________________________